x = sec(θ) ∴ |x| ≧ 1 ∴ x^2 - 1 = tan^2(θ) (x^2-1)/x^2 = sin^2(θ) (x^2-2)^2/x^4 = [(x^2-1)/x^2-1/x^2]^2 = (sin^2(θ) -1/x^2)^2 ≦ (max{sin^2(θ),1/x^2})^2 (*) ≦ 1 關於 (*): a, b 均非負, 則 |a-b| = max{a-b,b-a} ≦ max{a,b} 故 (a-b)^2 ≦ (max{a,b})^2 等號僅成立於 a, b 兩者其一為 0. 若 max{sin^2(θ),1/x^2} = sin^2(θ...